Factors controlling the input-output relationship of spherical bushy cells in the gerbil cochlear nucleus.

نویسندگان

  • Thomas Kuenzel
  • J Gerard G Borst
  • Marcel van der Heijden
چکیده

Despite the presence of large endbulb inputs, the spherical bushy cells (SBCs) of the rostral anteroventral cochlear nucleus do not function as simple auditory relays. We used the good signal-to-noise ratio of juxtacellular recordings to dissect the intrinsic and network mechanisms controlling the input-output relationship of SBCs in anesthetized gerbils. The SBCs generally operated close to action potential (AP) threshold and showed no evidence for synaptic depression, suggesting that the endbulbs of Held have low release probability in vivo. Analysis of the complex waveforms suggested that in the absence of auditory stimulation, postsynaptic spike depression and stochastic fluctuations in EPSP size were the main factors determining jitter and reliability of the endbulb synapse. During auditory stimulation, progressively larger EPSPs were needed to trigger APs at increasing sound intensities. Simulations suggested hyperpolarizing inhibition could explain the observed decrease in EPSP efficacy. Synaptic inhibition showed a delayed onset and generally had a higher threshold than excitatory inputs, but otherwise inhibition and excitation showed mostly overlapping frequency-response areas. The recruitment of synaptic inhibition caused postsynaptic spikes to be preferentially triggered by well-timed, large EPSPs, resulting in improved phase locking despite more variable EPSP-AP latencies. Our results suggest that the lack of synaptic depression, caused by low release probability, and the apparent absence of sound-evoked synaptic inhibition at low sound intensity maximize sensitivity of SBCs. At higher sound intensities, the recruitment of synaptic inhibition constrains their firing rate and optimizes their temporal precision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory properties underlying non-monotonic input-output relationship in low-frequency spherical bushy neurons of the gerbil

Spherical bushy cells (SBCs) of the anteroventral cochlear nucleus (AVCN) receive input from large excitatory auditory nerve (AN) terminals, the endbulbs of Held, and mixed glycinergic/GABAergic inhibitory inputs. The latter have sufficient potency to block action potential firing in vivo and in slice recordings. However, it is not clear how well the data from slice recordings match the inhibit...

متن کامل

Inhibition in the auditory brainstem enhances signal representation and regulates gain in complex acoustic environments

Inhibition plays a crucial role in neural signal processing, shaping and limiting responses. In the auditory system, inhibition already modulates second order neurons in the cochlear nucleus, e.g. spherical bushy cells (SBCs). While the physiological basis of inhibition and excitation is well described, their functional interaction in signal processing remains elusive. Using a combination of in...

متن کامل

Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation.

The strength of synapses between auditory nerve (AN) fibers and ventral cochlear nucleus (VCN) neurons is an important factor in determining the nature of neural integration in VCN neurons of different response types. Synaptic strength was analyzed using cross-correlation of spike trains recorded simultaneously from an AN fiber and a VCN neuron in anesthetized cats. VCN neurons were classified ...

متن کامل

Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range

Neuronal inhibition is crucial for temporally precise and reproducible signaling in the auditory brainstem. Previously we showed that for various synthetic stimuli, spherical bushy cell (SBC) activity in the Mongolian gerbil is rendered sparser and more reliable by subtractive inhibition (Keine et al., 2016). Here, employing environmental stimuli, we demonstrate that the inhibitory gain control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 11  شماره 

صفحات  -

تاریخ انتشار 2011